Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemphyschem ; : e202400208, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594204

RESUMO

Photoionization and dissociative photoionization of acetaldehyde (CH3CHO) in the 10.0‒13.7 eV energy range are studied by using synchrotron radiation double imaging photoelectron photoion coincidence spectroscopy (i2PEPICO). The X2A' and A2A" electronic states of CH3CHO+ as well as the Franck-Condon gap region between these two states have been populated with several vibrational sequences and assigned in the high-resolution slow photoelectron spectrum (SPES). The adiabatic ionization energies (AIEs) of the X2A' and A2A" states are measured at 10.228 ± 0.006 and 12.52 ± 0.05 eV, respectively. The present results show that the X2A' state is a stable state while the A2A" state is fully dissociative to produce CH3CO+, CHO+ and CH4+ fragment ions. The 0K appearance energies (AE0K) of CH3CO+ and CHO+ fragment ions are determined through the modeling of the breakdown diagram, i.e., AE0K(CH3CO+) = 10.89 ± 0.01 eV (including a reverse barrier of ~ 0.19 eV) and AE0K(CHO+) = 11.54 ± 0.05 eV. In addition, the dissociation mechanisms of CH3CHO+ including statistical dissociation, direct bond breaking and isomerization are discussed with the support of the calculated dissociation limits and transition state energies.

2.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38666575

RESUMO

Recently, some of us reviewed and studied the photoionization dynamics of C60 that are of great interest to the astrochemical community as four of the diffuse interstellar bands (DIBs) have been assigned to electronic transitions in the C60+ cation. Our previous analysis of the threshold photoelectron spectrum (TPES) of C60 [Hrodmarsson et al., Phys. Chem. Chem. Phys. 22, 13880-13892 (2020)] appeared to give indication of D3d ground state symmetry, in contrast to theoretical predictions of D5d symmetry. Here, we revisit our original measurements taking account of a previous theoretical spectrum presented in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), obtained within a vibronic model parametrized on density functional theory/local-density approximation electronic structure involving all hg Jahn-Teller active modes, which couple to the 2Hu components of the ground state of the C60+ cation. By reanalyzing our measured TPES of the ground state of the C60 Buckminsterfullerene, we find a striking resemblance to the theoretical spectrum calculated in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), and we provide assignments for many of the hg modes. In order to obtain deeper insights into the temperature effects and possible anharmonicity effects, we provide complementary modeling of the photoelectron spectrum via classical molecular dynamics (MD) involving density functional based tight binding (DFTB) computations of the electronic structure for both C60 and C60+. The validity of the DFTB modeling is first checked vs the IR spectra of both species which are well established from IR spectroscopic studies. To aid the interpretation of our measured TPES and the comparisons to the ab initio spectrum we showcase the complementarity of utilizing MD calculations to predict the PES evolution at high temperatures expected in our experiment. The comparison with the theoretical spectrum presented in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), furthermore, provides further evidence for a D5d symmetric ground state of the C60+ cation in the gas phase, in complement to IR spectroscopy in frozen noble gas matrices. This not only allows us to assign the first adiabatic ionization transition and thus determine the ionization energy of C60 with greater accuracy than has been achieved at 7.598 ± 0.005 eV, but we also assign the two lowest excited states (2E1u and 2E2u) which are visible in our TPES. Finally, we discuss the energetics of additional DIBs that could be assigned to C60+ in the future.

3.
Chem Sci ; 15(9): 3203-3213, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425510

RESUMO

The valence-shell dissociative photoionization of methyl iodide (CH3I) is studied using double imaging photoelectron photoion coincidence (i2 PEPICO) spectroscopy in combination with highly-tunable synchrotron radiation from synchrotron SOLEIL. The experimental results are complemented by new high-level ab initio calculations of the potential energy curves of the relevant electronic states of the methyl iodide cation (CH3I+). An elusive conical intersection is found to mediate internal conversion from the initially populated first excited state, CH3I+(Ã2A1), into the ground cationic state, leading to the formation of methyl ions (CH3+). The reported threshold photoelectron spectrum for CH3+ reveals that the ν5 scissors vibrational mode promotes the access to this conical intersection and hence, the transfer of population. An intramolecular charge transfer takes place simultaneously, prior to dissociation. Upon photoionization into the second excited cationic state, CH3I+(B̃2E), a predissociative mechanism is shown to lead to the formation of atomic I+.

4.
Angew Chem Int Ed Engl ; 63(17): e202401423, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38442011

RESUMO

Conformational flexibility and chirality both play a key role in molecular recognition. It is therefore very useful to develop spectroscopic methods that simultaneously probe both properties. It has been theoretically predicted that photoelectron circular dichroism (PECD) should be very sensitive to conformational isomerism. However, experimental proof has been less forthcoming and only exists for a very few favorable cases. Here, we present a new PECD scheme based on resonance-enhanced two-photon ionization (RE2PI) using UV/Vis nanosecond laser excitations. The spectral resolution obtained thereby guarantees conformer-selectivity by inducing resonant conformer-specific ππ* S1←S0 transitions. We apply this experimental scheme to the study of chiral 1-indanol, which exists in two conformers linked by a ring inversion and defined by the position of the hydroxyl group, namely axial and equatorial. We show that the PECD of the equatorial and axial forms considerably differ in sign, magnitude and shape. We also discuss the influence of the total ionization energy, vibronic excitation of intermediate and final states, and relative polarization of the excitation and ionization lasers. Conformer-specificity adds a new dimension to the applications of PECD in analytical chemistry addressing now the general case of floppy systems.

5.
Analyst ; 149(5): 1586-1596, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38289286

RESUMO

The signal levels observed from mass spectrometers coupled by molecular beam sampling to shock tubes are impacted by dynamic pressures in the spectrometer due to rapid pressure changes in the shock tube. Accounting for the impact of the pressure changes is essential if absolute concentrations of species are to be measured. Obtaining such a correction for spectrometers operated with vacuum ultra violet photoionization has been challenging. We present here a new external calibration method which uses VUV-photoionization of CO2 to develop time-dependent corrections to species concentration/time profiles from which kinetic data can be extracted. The experiments were performed with the ICARE-HRRST (high repetition rate shock tube) at the DESIRS beamline of synchrotron SOLEIL. The calibration experiments were performed at temperatures and pressures behind reflected shock waves of 1376 ± 12 K and 6.6 ± 0.1 bar, respectively. Pyrolytic experiments with two aromatic species, toluene (T5 = 1362 ± 22 K, P5 = 6.6 ± 0.2 bar) and ethylbenzene (T5 = 1327 ± 18 K, P5 = 6.7 ± 0.2 bar), are analyzed to test the method. Time dependent concentrations for molecular and radical species were corrected with the new method. The resulting signals were compared with chemical kinetic simulations using a recent mechanism for pyrolytic formation of polycyclic aromatic hydrocarbons. Excellent agreement was obtained between the experimental data and simulations, without adjustment of the model, demonstrating the validity of the external calibration method.

6.
Analyst ; 148(24): 6228-6240, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37987708

RESUMO

A new photoelectron spectroscopic method permitting a quantitative analysis of the volatile headspace of several essential oils is presented and discussed. In particular, we focus on the monoterpene compounds, which are known to be the dominant volatile components in many such oils. The photoelectron spectra of the monoterpene constituents may be effectively isolated by accepting for analysis only those electrons that accompany the production of m/z = 136 ions, and by using low photon energies that restrict cation fragmentation. The monoterpene isomers are then identified and quantified by regression modelling using a library of terpene standard spectra. An advantage of this approach is that pre-concentration of the volatile vapour is not required, and all steps are performed at ambient temperature, avoiding the possible deleterious effects (such as isomerisation/decomposition) that may sometimes arise in gas chromatographic (GC) procedures. As a proof-of-principle demonstration, three citrus oils (lemon, lime, bergamot) are analysed with this approach and the results are compared with reported GC composition profiles obtained for these oils. Potential advantages of the methodology that include multiplex detection and real-time, in situ analysis are identified and discussed. Alternative and faster experimental implementations concerning laboratory-based ionization and detection schemes are proposed and considered, as is the possibility of a straightforward extension towards simultaneous determination of enantiomeric excesses.

8.
Phys Chem Chem Phys ; 25(45): 30838-30847, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877862

RESUMO

Fluorinated species have a pivotal role in semiconductor material chemistry and some of them have been detected beyond the Earth's atmosphere. Achieving good energy accuracy on fluorinated species using quantum chemical calculations has long been a challenge. In addition, obtaining direct experimental thermochemical quantities has also proved difficult. Here, we report the threshold photoelectron and photoion yield spectra of SiF and CF radicals generated with a fluorine reactor. The spectra were analysed with the support of ab initio calculations, resulting in new experimental values for the adiabatic ionisation energies of both CF (9.128 ± 0.006 eV) and SiF (7.379 ± 0.009 eV). Using these values, the underlying thermochemical network of Active Thermochemical Tables was updated, providing further refined enthalpies of formation and dissociation energies of CF, SiF, and their cationic counterparts.

9.
Nat Commun ; 14(1): 6290, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813848

RESUMO

An achiral chromophore can acquire a chiral spectroscopic signature when interacting with a chiral environment. This so-called induced chirality is documented in electronic or vibrational circular dichroism, which arises from the coupling between electric and magnetic transition dipoles. Here, we demonstrate that a chiroptical response is also induced within the electric dipole approximation by observing the asymmetric scattering of a photoelectron ejected from an achiral chromophore in interaction with a chiral host. In a phenol-methyloxirane complex, removing an electron from an achiral aromatic π orbital localised on the phenol moiety results in an intense and opposite photoelectron circular dichroism (PECD) for the two enantiomeric complexes with (R) and (S) methyloxirane, evidencing the long-range effect (~5 Å) of the scattering chiral potential. This induced chirality has important structural and analytical implications, discussed here in the context of growing interest in laser-based PECD, for in situ, real time enantiomer determination.

10.
Angew Chem Int Ed Engl ; 62(32): e202306196, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37395384

RESUMO

Non-oxidative coupling of methane is a promising route to obtain ethylene directly from natural gas. We synthesized siliceous [Fe]zeolites with MFI and CHA topologies and found that they display high selectivity (>90 % for MFI and >99 % for CHA) to ethylene and ethane among gas-phase products. Deactivated [Fe]zeolites can be regenerated by burning coke in air. In situ X-ray absorption spectroscopy demonstrates that the isolated Fe3+ centers in zeolite framework of fresh catalysts are reduced during the reaction to the active sites, including Fe2+ species and Fe (oxy)carbides dispersed in zeolite pores. Photoelectron photoion coincidence spectroscopy results show that methyl radicals are the reaction intermediates formed upon methane activation. Ethane is formed by methyl radical coupling, followed by its dehydrogenation to ethylene. Based on the observation of intermediates including allene, vinylacetylene, 1,3-butadiene, 2-butyne, and cyclopentadiene over [Fe]MFI, a reaction network is proposed leading to polyaromatic species. Such reaction intermediates are not observed over the small-pore [Fe]CHA, where ethylene and ethane are the only gas-phase products.

11.
Science ; 380(6650): 1161-1165, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37228229

RESUMO

Low-energy electrons dissolved in liquid ammonia or aqueous media are powerful reducing agents that promote challenging reduction reactions but can also cause radiation damage to biological tissue. Knowledge of the underlying mechanistic processes remains incomplete, particularly with respect to the details and energetics of the electron transfer steps. In this work, we show how ultraviolet (UV) photoexcitation of metal-ammonia clusters could be used to generate tunable low-energy electrons in situ. Specifically, we identified UV light-induced generation of spin-paired solvated dielectrons and their subsequent relaxation by an unconventional electron transfer-mediated decay as an efficient, low-energy electron source. The process is robust and straightforward to induce with the prospect of improving our understanding of radiation damage and fostering mechanistic studies of solvated electron reduction reactions.

12.
J Phys Chem Lett ; 14(15): 3698-3705, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37040591

RESUMO

Studying the stability of hydrogen-bonded nucleobase pairs, at the heart of the genetic code, is of utmost importance for an in-depth understanding of basic mechanisms of life and biomolecular evolution. We present here a VUV single photon ionization dynamic study of the nucleobase pair adenine-thymine (AT), revealing its ionization and dissociative ionization thresholds via double imaging electron/ion coincidence spectroscopy. The experimental data, consisting of cluster mass-resolved threshold photoelectron spectra and photon energy-dependent ion kinetic energy release distributions, allow the unambiguous distinction of the dissociation of AT into protonated adenine AH+ and a dehydrogenated thymine radical T(-H) from dissociative ionization processes of other nucleobase clusters. Comparison to high-level ab initio calculations indicates that our experimental observations can be explained by a single hydrogen-bonded conformer present in our molecular beam and allows the estimation of an upper limit of the barrier of the proton transfer in the ionized AT pair.


Assuntos
Prótons , Timina , Timina/química , Adenina/química , Espectrometria de Massas
13.
ACS Catal ; 13(6): 3471-3484, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36970466

RESUMO

The methanol-to-hydrocarbons (MTH) process is an industrially relevant method to produce valuable light olefins such as propylene. One of the ways to enhance propylene selectivity is to modify zeolite catalysts with alkaline earth cations. The underlying mechanistic aspects of this type of promotion are not well understood. Here, we study the interaction of Ca2+ with reaction intermediates and products formed during the MTH reaction. Using transient kinetic and spectroscopic tools, we find strong indications that the selectivity differences between Ca/ZSM-5 and HZSM-5 are related to the different local environment inside the pores due to the presence of Ca2+. In particular, Ca/ZSM-5 strongly retains water, hydrocarbons, and oxygenates, which occupy as much as 10% of the micropores during the ongoing MTH reaction. This change in the effective pore geometry affects the formation of hydrocarbon pool components and in this way directs the MTH reaction toward the olefin cycle.

14.
Phys Chem Chem Phys ; 25(6): 4501-4510, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722859

RESUMO

We present a combined experimental and theoretical study on the dissociative ionisation of clusters of pyrene. We measured the experimental appearance energies in the photon energy range 7.2-12.0 eV of the fragments formed from neutral monomer loss for clusters up to the hexamer. The results obtained show a deviation from statistical dissociation. From electronic structure calculations, we suggest that the role of excited states must be considered in the interpretation of experimental results, even in these relatively large systems. Non-statistical effects in the dissociative ionization process of polycyclic aromatic hydrocarbon (PAH) clusters may have an impact on the assessment of mechanisms determining the stability of these clusters in astrophysical environments.

15.
Chem Commun (Camb) ; 58(94): 13139-13142, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349724

RESUMO

Despite decades of research on alkene ozonolysis, the kinetic network of the archetypal case of ethylene (CH2CH2) with ozone (O3) still lacks consensus. In this work, experimental evidence of an elusive diradical pathway is provided through the detection of the 2-hydroperoxyacetaldehyde ketohydroperoxide and its decomposition product, glyoxal.


Assuntos
Glioxal , Ozônio , Cinética , Etilenos
16.
J Am Chem Soc ; 144(40): 18518-18525, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174230

RESUMO

We provide compelling experimental and theoretical evidence for the transition state nature of the cyclopropyl cation. Synchrotron photoionization spectroscopy employing coincidence techniques together with a novel simulation based on high-accuracy ab initio calculations reveal that the cation is unstable via its allowed disrotatory ring-opening path. The ring strains of the cation and the radical are similar, but both ring opening paths for the radical are forbidden when the full electronic symmetries are considered. These findings are discussed in light of the early predictions by Longuet-Higgins alongside Woodward and Hoffman; we also propose a simple phase space explanation for the appearance of the cyclopropyl photoionization spectrum. The results of this work allow the refinement of the cyclopropane C-H bond dissociation energy, in addition to the cyclopropyl radical and cation cyclization energies, via the Active Thermochemical Tables approach.

17.
J Phys Chem A ; 126(34): 5784-5799, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998573

RESUMO

Cyclohexane oxidation chemistry was investigated using a near-atmospheric pressure jet-stirred reactor at T = 570 K and equivalence ratio ϕ = 0.8. Numerous intermediates including hydroperoxides and highly oxygenated molecules were detected using synchrotron vacuum ultraviolet photoelectron photoion coincidence spectroscopy. Supported by high-level quantum calculations, the analysis of photoelectron spectra allowed the firm identification of molecular species formed during the oxidation of cyclohexane. Besides, this work validates recently published gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry data. Unambiguous detection of characteristic hydroperoxides (e.g., γ-ketohydroperoxides) and their respective decomposition products provides support for the conventional O2 addition channels up to the third addition and their relative contribution to the cyclohexane oxidation. The results were also compared with the predictions of a recently proposed new detailed kinetic model of cyclohexane oxidation. Most of the predictions are in line with the current experimental findings, highlighting the robustness of the kinetic model. However, the analysis of the recorded slow photoelectron spectra indicating the possible presence of C5 species in the kinetic model provides hints that the substituted cyclopentyl radicals from cyclohexyl ring opening might play a minor role in cyclohexane oxidation. Potentially important missing reactions are also discussed.

18.
Phys Chem Chem Phys ; 24(29): 17569-17576, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35822946

RESUMO

Coincidence ion pair production (I+ + I-) (cipp) spectra of I2 were recorded in a double imaging coincidence experiment in the one-photon excitation region of 71 600-74 000 cm-1. The I+ + I- coincidence signal shows vibrational band head structure corresponding to iodine molecule Rydberg states crossing over to ion-pair (I+I-) potential curves above the dissociation limit. The band origin (ν0), vibrational wavenumber (ωe) and anharmonicity constants (ωexe) were determined for the identified Rydberg states. The analysis revealed a number of previously unidentified states and a reassignment of others following a discrepancy in previous assignments. Since the ion pair production threshold is well established, the electric field-dependent spectral intensities were used to derive the cutoff energy in the transitions to the rotational levels of the 7pσ(1/2) (v' = 3) state.

19.
J Chem Phys ; 157(1): 014303, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803794

RESUMO

The first measurement of the photoelectron spectrum of the silylidyne free radical, SiH, is reported between 7 and 10.5 eV. Two main photoionizing transitions involving the neutral ground state, X+1Σ+ ← X2Π and a+3Π â† X2Π, are assigned by using ab initio calculations. The corresponding adiabatic ionization energies are derived, IEad(X+1Σ+) = 7.934(5) eV and IEad(a+3Π) = 10.205(5) eV, in good agreement with our calculated values and the previous determination by Berkowitz et al. [J. Chem. Phys. 86, 1235 (1987)] from a photoionization mass spectrometric study. The photoion yield of SiH recorded in this work exhibits a dense autoionization landscape similar to that observed in the case of the CH free radical [Gans et al., J. Chem. Phys. 144, 204307 (2016)].

20.
Phys Chem Chem Phys ; 24(18): 10826-10837, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35485277

RESUMO

tert-Butyl hydroperoxide (tBuOOH) is a common intermediate in the oxidation of organic compounds that needs to be accurately quantified in complex gas mixtures for the development of chemical kinetic models of low temperature combustion. This work presents a combined theoretical and experimental investigation on the synchrotron-based VUV single photon ionization of gas-phase tBuOOH in the 9.0 - 11.0 eV energy range, including dissociative ionization processes. Computations consist of the determination of the structures, vibrational frequencies and the energetics of neutral and ionic tBuOOH. The Franck-Condon spectrum for the tBuOOH+ (X+) + e- ← tBuOOH (X) + hν transition is computed, where special treatment is undertaken because of the flexibility of tBuOOH, in particular regarding the OOH group. Through comparison of the experimental mass-selected threshold photoelectron spectra with explicitly correlated coupled cluster calculations and Franck-Condon simulations that account for the flexibility of the molecule, an estimation of the ionization energy is given. The appearance energy of the only fragment observed within the above-mentioned energy range, identified as the tert-butyl C4H9+, is also reported. Finally, the signal branching ratio between the parent and the fragment ions is provided as a function of photon energy, essential to quantify tBuOOH in gas-phase oxidation/combustion experiments via advanced mass spectrometry techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...